US009110831B2

a2z United States Patent (10) Patent No.: US 9,110,831 B2
Frost et al. 45) Date of Patent: Aug. 18, 2015
(54) HIGH-SPEED MEMORY SYSTEM (58) Field of Classification Search
CPC ..o GO6F 11/1008; GOG6F 2213/0038;
(71) Applicant: International Business Machines GOGF 3/0679; GOG6F 11/1072; GO6F 11/1016;
Corporation, Armonk, NY (US) GOGF 11/1068; GOGF 13/1663; G11C 7/1072
USPC et 714/767
(72) Inventors: Helloway H. Frost, Houston, TX (US); See application file for complete search history.
Reb J. Hutsell, Houston, TX (US
eheced utsell, Houston, TX (US) (56) References Cited
(73) Assignee: International Business Machines US. PATENT DOCUMENTS

Corporation, Armonk, NY (US)
6,148,354 A 11/2000 Ban et al.
(*) Notice: Subject to any disclaimer, the term of this 6,438,146 B1 8/2002 Brafford
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by O days.
OTHER PUBLICATIONS

(21)  Appl. No.: 14/242,532 Eckart, B, He, X., Wu, Q., and Xie, C., “A Dynamic Performance-

Based Flow Control Method for High-Speed Data Transfer”, IEEE
Transactions on Parallel and Distributed Systems, vol. 21, No. 1, pp.
114-125, Jan. 2010, copyright 2010 IEEE.

(Continued)

(22) Filed: Apr. 1,2014

(65) Prior Publication Data
US 2014/0215290 A1l Jul. 31,2014

Primary Examiner — Guy Lamarre
A (74) Attorney, Agent, or Firm — Lock Lord LLP
Related U.S. Application Data
(62) Division of application No. 13/758,093, filed on Feb. (57 ABSTRACT
4,2013, now Pat. No. 8,694,863, which is a division of The disclosed embodiments relate to a Flash-based memory
application No. 13/244,074, filed on Sep. 23, 2011, module having high-speed serial communication. The Flash-
now Pat. No. 8,386,887. based memory module comprises, among other things, a plu-

.. L rality of I/O modules, each configured to communicate with
(60)  Provisional application No. 61/386,237, filed on Sep. an external device over one or more external communication

24, 2010. links, a plurality of Flash-based memory cards, each compris-

51) Int. CI ing a plurality of Flash memory devices, and a plurality of
Gh Gn 1'1 c 2 900 2006.01 crossbar switching elements, each being connected to a
GOGF 11/10 (200 6. 01) respective one of the Flash-based memory cards and config-

GOGF 3/06 (2006.01) ured to allow each one of the /O modules to communicate

.( 0D) with the respective one of the Flash-based memory cards.

(Continued) Each I/O module is connected to each crossbar switching

(52) US.CL element by a high-speed serial communication link, and each
CPC ... GOGF 11/1068 (2013.01); GOG6F 3/0679 crossbar switching element is connected to the respective one

(2013.01); GOGF 11/1008 (2013.01); GO6F of the Flash-based memory cards by a plurality of parallel
11/1016 (2013.01); GOGF 11/1072 (2013.01); communication links.

(Continued) 15 Claims, 25 Drawing Sheets

500

506

" MEMORY
o | CONTROLLER

503 .
! FLASH RAM
513 517
CcPU D — 508

]
23| MEMORY
T | CONTROLLER

|FLASH  RAM

514 58
510

) .

% MEMORY

e
p | CONTROLLER

502 ! FL'ASH RA\M
h 515 519
512

e

504 1, CONTROLLER
— i

——*  MEMORY |
16 CONTROLLER

FLASH RAM |

516 520



US 9,110,831 B2
Page 2

(51) Imnt.ClL
GO6F 13/16 (2006.01)
G11C 7710 (2006.01)
(52) US.CL
CPC ... GOG6F 13/1663 (2013.01); G11C 7/1072
(2013.01); GOGF 2213/0038 (2013.01)
(56) References Cited

U.S. PATENT DOCUMENTS

6,609,167 Bl 8/2003 Bastiani et al.
6,654,831 Bl  11/2003 Oftterness et al.
6,891,827 B2* 5/2005 Cho ..occoovvvvverieirriii, 370/356
7,000,056 B2 2/2006 Poisner
2003/0072308 Al* 4/2003 Fukuietal ........... 370/392

2003/0088729 Al
2004/0255054 Al
2005/0080529 Al*

5/2003 Polizzi et al.
12/2004 Puaet al.

4/2005 Hashimoto et al. ............. 701/36
2005/0213421 Al 9/2005 Polizzi et al.
2006/0178052 Al 8/2006 Inaba
2006/0279295 Al* 12/2006 Crook etal. ......c......... 324/690
2007/0258288 Al  11/2007 Amidon et al.

2008/0052600 Al
2008/0126851 Al

2/2008 Cheng et al.
5/2008 Zadigian et al.

2009/0026267 Al* 1/2009 Wangetal. ................. 235/440

2009/0083457 Al 3/2009 Kim

2009/0172308 Al 7/2009 Prins et al.

2010/0155493 Al* 6/2010 Russelletal. ........... 235/492
OTHER PUBLICATIONS

Dell, T., “A White Paper on the Benefits of Chipkill-Correct ECC for
PC Server Main Memory”, IBM Microelectronics Division—Rev.
Nov. 19, 1997, copyright 1997 International Business Machines
Corp.

Kim, S.Y., International Search Report for International Patent Appli-
cation No. PCT/US2011/053129, Korean Intellectual Property
Office, dated Apr. 23, 2012.

Kim, S.Y., Written Opinion for International Patent Application No.
PCT/US2011/053129, Korean Intellectual Property Office, dated
Apr. 23,2012.

Kim, S.Y., International Preliminary Report on Patentability for
International Patent Application No. PCT/US2011/053129, Korean
Intellectual Property Office, dated Apr. 4, 2013.

* cited by examiner



U.S. Patent Aug. 18, 2015 Sheet 1 of 25 US 9,110,831 B2

| MEMORY
——— | MEMORY

MEMORY
— —— |_MEMORY
~ _MEMORY _

CROSSBAR

132 142

¥

' | MEMORY |¥
~———{ MEMORY |
CROSSBAR e ‘ MEMORY ‘

— ———| MEMORY

] MEMORY

134 144

[ MEMORY ¥
| MEMORY
CROSSBAR " MEMORY
~—— | MEMORY
~~—— MEMORY

136 146

7 MEMORY
| MEMORY
CROSSBAR - MEMORY
— —— —] MEMORY

“~—— MEMORY

A
P10 |

System Controller ‘

FIG. 1 100




U.S. Patent

Aug. 18,2015
Page
Request
Address
Boundaries Page
Page
Memory

Sheet 2 of 25

160
\

Data

External
Write
Request

FIG. 1A

US 9,110,831 B2

Starting
Address



U.S. Patent

Aug. 18,2015
Page
DMA Page
Request
Address
Boundaries Page
Page
Memory

Sheet 3 of 25

170
\

Data

External
Write
Request

FIG. 1B

US 9,110,831 B2

Starting
Address



U.S. Patent Aug. 18, 2015 Sheet 4 of 25 US 9,110,831 B2

180 \ Starting
Address
Page
DMA Page Data
Request
Address
Boundaries Page External
Write
Page Request

Memory

FIG. 1C



U.S. Patent Aug. 18, 2015 Sheet 5 of 25 US 9,110,831 B2

290
20§
CPU
2()4
201 202a FPGA _
'4 Fibre < MGT - 210
Channel
»  Converter —— >
MGT 212
< )
293 202b > |
/ ) MGT 214
- Fibre - —
Channel .
»  Converter ——p >
MGT 216
.
208
MEMORY

FIG. 2



U.S. Patent Aug. 18, 2015 Sheet 6 of 25 US 9,110,831 B2

306
CPU 304
FPGA
>
MGT 310
3/01 302
/ - T 312
MGT J
< » InfiniBand g PC| 8 ‘
; Interface <PXT> Swit:h -
. Chl e PCle —T
- P Gen2 Gen2 MGT 314
_>7
MGT 316
.<.— e
308
MEMORY

FIG. 3



U.S. Patent Aug. 18, 2015 Sheet 7 of 25 US 9,110,831 B2

400
402 = 16 412
MGT 5 MEMORY ~
404 , f@ /’f},14
MGT 5 MEMORY |~
406 [ « 2 A0
MGT| FPGA ‘5/, MEMORY
16 418
408 | ————» -—
] MGT 5 MEMORY ~
16 420
410 | ——— e e
MGT 5 MEMORY ¢

FIG. 4



U.S. Patent Aug. 18, 2015 Sheet 8 of 25 US 9,110,831 B2

500

506

—————>  MEMORY
. CONTROLLER

FLASH | RAM

503

513 517
CPU 508

| - MEMORY

A = CONTROLLER

FLASH RAM
<

514 518
510

> MEMORY
16 CONTROLLER

FLASH| RAM
<

- 515 519
‘ 512

502

5 - > MEMORY
‘ s CONTROLLER

FLASH | RAM |

504 {4_16_, CONTROLLER

516 520

FIG. 5



U.S. Patent Aug. 18, 2015 Sheet 9 of 25 US 9,110,831 B2

600
602 604 606
16
<«—  SYSTEM MEMORY
__5 , CONTROLLER ¥ ™|CONTROLLER[_+  RAM

FIG. 6



U.S. Patent Aug. 18, 2015 Sheet 10 of 25 US 9,110,831 B2

700

740

A
=
O

MEMORY

A
=
@)

A
=
@)

A

A
=
O

707 ——— "/44

A
¥

=

O

S

A
-
O

A
A

=

o

A

Each connection is fwo links,

FIG. 7



U.S. Patent Aug. 18, 2015 Sheet 11 of 25 US 9,110,831 B2

800
806 802 804

-+ —

<> -

<> -

<> -

<> -

<+ -

<> -

Data

- -

> -

-+ B

- -

- —

- gg%%ﬁ?gEH CONTROL UNIT MEMORY
< —

> - Control
> -

<+ >

<> -

<> -

<> <>

<+ -

P —

S -

> S

FIG. 8



U.S. Patent

802

Aug. 18, 2015

Sheet 12 of 25

912

O
o
e

Serial = SerDes

256

" Packing

h 4

914 916 918
256  ECC | 288 | EVEN 288
FIFO e —~— OUTPUT ——
ChipKill FIFO
920

ODD 288
—— QUTPUT —=

288 | FIFO

922

MUX

288

US 9,110,831 B2

FIG. 9

DDR

A 4



U.S. Patent Aug. 18, 2015 Sheet 13 of 25

912

US 9,110,831 B2

1012

A1
A2

900 . 22
PACKING
SERIAL MGT / A FIFO

A6
A7
A8

1010

v
v

FIG. 10A



U.S. Patent Aug. 18, 2015 Sheet 14 of 25 US 9,110,831 B2

1012

A1

A2

A3

32 A4 256

v
AN
N,

A5

A6

A7

A8

FIG. 10B



U.S. Patent

Aug. 18, 2015

1012
AN

Sheet 15 of 25

C1

B1

A1

C2

B2

A2

C3

B3

A3

C4

B4

A4

C5

B5

A5

Co6

B6

AG

C7

B7

A7

C8

B8

A8

FIG. 10C

US 9,110,831 B2

256



U.S. Patent Aug. 18, 2015 Sheet 16 of 25 US 9,110,831 B2

1012
4

71| y1 | x1 c1|B1| A1
72| v2 | x2 c2|B2|A2
z3|va|x3|--- |c3|B3|A3

| za|va|xa calBa|ad| 255

" lzslvs|x5 csles|as|
z6|ve|xe| " |ce|B6|As
z7 | v7 | x7 c7|B7|A7
78| 8 |xs cs|Bs|As

FIG. 10D



U.S. Patent Aug. 18, 2015 Sheet 17 of 25 US 9,110,831 B2

914

256 1140a 1140b 1140c 256

v

BMC | BMC | BMC
DATA  DATA| DATA

FIG. 11



U.S. Patent Aug. 18, 2015 Sheet 18 of 25 US 9,110,831 B2
918
91@ g
256 288 Ss 288
—_— — Q9
oo
No
920
N
SS| 288
R oo
>  aag——
W=
cycle | 1 2 3 4 5 6 7 8 9 10
916 a0 a\1 a2 a3 a4 a5 a6 a7 a8 a9
918 ‘aO \\32 ad a6 a8
920 \ ) as a7

FIG. 12A



U.S. Patent

Aug. 18, 2015

(FIFO

Sheet 19 of 25

916

ECC

256

v

+

918

US 9,110,831 B2

922

ChipKill

v

FIFO

920

—— FIFO

FIG. 13A

288

288

DDR




U.S. Patent Aug. 18, 2015 Sheet 20 of 25 US 9,110,831 B2

<« /0] ¥ 016
< 072 | 914 91{5 622
1374 ]
/0 256 | CKT 288 EVEN 288
<—1/0 1375 T |FIFO—— + ——t—* OUTPUT —*
ECC FIFO
920 288,
DDR
ODD g5
— OUTPUT ——
288  FIFO
.._/_>

<« 0132 91g g

<+—» |/O /1375. w 256 | CKT
<-—»{1/0 [ T IFIFO > o+
-1376' ECC

FIG. 13B



U.S. Patent

cycle

916

918

920

916’

Aug. 18, 2015 Sheet 21 of 25 US 9,110,831 B2
91\8
Even Words
From 916
Odd Words
From 916'
920
Odd Words
From 916
Even Words
From 916’
1 2 3 4 5 6 7 8 9 10
a0 al a2 a3 a4 as ab a7 a8 a9
\ A\
ol0] \ b1 b2 \\ b3 h4 b5 b6 b7 h8 b9
4 A A
a0 b1 a2 h3 ad b5 ab h7 a8
b0 al b2 a3 b4 a5 b6 a7 b8

FIG. 14B




U.S. Patent Aug. 18, 2015 Sheet 22 of 25 US 9,110,831 B2
918
Even Words
From 916
Even Words
From 916’
920
Odd Words
From 916
Odd Words
From 916’
cycle | 1 2 3 4 5 6 7 8 9 10
916 | =0 at a2 a3 ad a5 ab a7 a8 a9
916’ | »o b1 b2 b3 b4 b5 b6 b7 b8 b9
916’ delefxyed bO | b1 [\ b2 | b3 | b4 | b5 | b6 | b7 | b8
o A
918 a0 | b0 | a2 | b2 | a4 | b4 | a6 | b6 | a8
920: al b1 a3 | b3 | a5 | b5 | a7 | b7

FIG. 14D



U.S. Patent

802

Aug. 18, 2015

Sheet 23 of 25

US 9,110,831 B2

1370

15QQ\

110 1

110 1

13&1
1012

READ
commands

1501

11O 1

WRITE
commands

1504

.

1502\<

Arb

/O 12
READ
commands

1503

/0 12
WRITE
commands

)

FIG. 15



US 9,110,831 B2

BankA

BankB

BankC

1602

BankD

BankA

BankB

BankC

1604

BankD

BankA

BankB

BankC

1606

BankD

—

BankA

BankB

BankC

1608

U.S. Patent Aug. 18, 2015 Sheet 24 of 25
802
22 addr/ctl ‘
72 data \
22
< addr/ctl

72 data I

Controller 29 addr/ctl |
2 data ;
22 addr/ctl ‘
72 data |

BankD

%

FIG. 16



U.S. Patent Aug. 18, 2015 Sheet 25 of 25 US 9,110,831 B2

I i I i | | i |
1%2‘3|4}5‘6[7;819110}11l12‘13‘14!15116‘17[18!19120‘21‘22 2324 25|26 27128{29’30[31]32%
L I i i

Cmd Act | | Actwp, ! !Acth lActh
Lo b Rp

Rp

Rp

iwoiw1 “wziwsiwoim ‘Wz‘[wsiwoi‘wﬂwz\ws WOW1W2ws3
Data S S — - — —

IRo|R1/R2[R3|RO|RT|R2|R3|R0[R1[R2|R3 RO R1|R2|R3

FIG. 17



US 9,110,831 B2

1
HIGH-SPEED MEMORY SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a divisional of U.S. Non-Provisional
application Ser. No. 13/758,093, entitled “High-Speed
Memory System,” filed Feb. 4, 2013; which is a divisional of
U.S. Non-Provisional application Ser. No. 13/244,074,
entitled “High-Speed Memory System,” filed Sep. 23, 2011
(now U.S. Pat. No. 8,386,887); which claims the benefit of
priority from U.S. Provisional Application No. 61/386,237,
entitled “High-Speed Memory System,” filed Sep. 24, 2010;
all of the foregoing applications being incorporated herein by
reference in their entireties.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

Not applicable.

REFERENCE TO APPENDIX

Not applicable.
BACKGROUND OF THE INVENTION

1. Field of the Invention

This disclosure relates generally to storage systems that are
accessed by external host devices and/or external communi-
cating devices.

2. Description of the Related Art

Storage systems often use a variety of methods and devices
to receive incoming data and data requests and to process
those requests to store or retrieve data. Often such storage
systems are limited in their bandwidth because they have a
limited number of input/output ports and/or because of bottle-
necks that exist within the system. Such bottlenecks can arise
through the use of relatively slow data buses, as well as
through the use of complicated switching or transmission
structures and/or protocols.

Accordingly, what is needed is a more effective, efficient
and optimal high-speed memory system.

SUMMARY OF THE INVENTION

The disclosed embodiments relate to methods and appara-
tuses for providing a more effective, efficient, and optimal
high-speed memory system. In general, in one aspect, the
disclosed embodiments relate to a Flash-based memory mod-
ule having high-speed serial communication. The Flash-
based memory module comprises, among other things, a plu-
rality of input/output (I/O) modules, each /O module
configured to communicate with an external device over one
or more external communication links, a plurality of Flash-
based memory cards, each Flash-based memory card com-
prising a plurality of Flash memory devices, each Flash
memory device having a physical memory space that is
divided into blocks, each block being further divided into
pages, each page representing an individually addressable
memory location on which memory operations are per-
formed, multiple such memory locations being erasable at the
same time in one-block groupings, and a plurality of crossbar
switching elements, each crossbar switching element being
connected to a respective one of the Flash-based memory
cards and configured to allow each one of the I/O modules to
communicate with the respective one of the Flash-based

15

20

25

40

45

50

2

memory cards. Each I/O module is connected to each cross-
bar switching element by a high-speed serial communication
link, each high-speed serial communication link allowing
each I/O module to transmit and receive bits representing
commands, instructions and/or data to and from each crossbar
switching element, and each crossbar switching element is
connected to the respective one of the Flash-based memory
cards by a plurality of parallel communication links, each
parallel communication link connecting one crossbar switch-
ing element to one of the Flash memory devices of the respec-
tive one of the Flash-based memory cards.

In general, in another aspect, the disclosed embodiments
relate to an expandable high-speed memory. The expandable
high-speed memory comprises, among other things, a printed
circuit board (PCB), interface circuitry mounted on the PCB
and configured to allow the high-speed memory card to
receive bits representing instructions, commands, and/or data
from one or more external devices over one or more high-
speed serial communication links, a plurality of memory
devices mounted to the PCB, each memory device having a
physical memory space on which memory operations are
performed, and a controller mounted to the PCB and con-
nected to the interface circuitry and the plurality of memory
devices, the controller configured to control communication
between the interface circuitry and each memory device to
perform the memory operations. The interface circuitry is
connected to the controller by a plurality of high-speed serial
communication lines, each high-speed serial communication
line corresponding to one of the high-speed serial communi-
cation links, and the controller is connected to the plurality of
memory devices by a predefined number of parallel commu-
nication lines, the controller configured to convert the bits
representing commands, instructions and/or data from the
high-speed serial communication links from a serial format to
a parallel format.

In general, in yet another aspect, the disclosed embodi-
ments relate a memory module having high-speed serial com-
munication. The memory module comprises, among other
things, a first plurality of input processing blocks and a sec-
ond plurality of input processing blocks, each input process-
ing blocks configured to receive bits representing commands,
instructions and/or data according to a serial format and rear-
range the bits representing commands, instructions and/or
data according to a parallel format, a plurality of memory
devices, each memory device having a physical memory
space on which memory operations are performed, and a
controller connected to the first and second plurality of input
processing blocks and the memory devices, the controller
configured to control communication between the first and
second plurality of input processing blocks and each memory
device to perform the memory operations. The controller
comprises, among other things: (a) a first multi-channel
buffer and a second multi-channel buffer connected to the first
and second plurality of input processing blocks, respectively,
each multi-channel buffer configured to receive the bits rep-
resenting commands, instructions and/or data in parallel for-
mat from the first and second plurality of input processing
blocks, respectively, and construct a predefined number of
words from the bits representing commands, instructions
and/or data, each word being composed of a predefined num-
ber of bits; (b) a first error correction and data protection
circuit and a second error correction and data protection cir-
cuit connected to the first and second multi-channel buffers,
respectively, the first and second error correction and data
protection circuits configured receive the words from the first
and second multi-channel buffer, respectively, generate one
or more error correction code bits using the words, add the



US 9,110,831 B2

3

error correction code bits for each word to the word, and
output each word with the error correction code bits added
thereto; (c) a first output buffer and a second output buffer
connected to the first and second correction and data protec-
tion circuits, respectively, the first and second output buffers
configured to receive in turn the words with the error correc-
tion code bits added thereto from the first and second error
correction and data protection circuits such that a first word
from one of the first and second error correction and data
protection circuits is provided to one of the first and second
output buffers and a next word from another one of the first
and second error correction and data protection circuits is
provided to another one of the first and second output buffers;
and (d) a memory buffer configured to received the words
with the error correction code bits added thereto from the first
and second output buffers and to combine a predefined num-
ber of the words in a predefined manner to form a super-word.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a high-speed storage system constructed
in accordance with certain teachings of this disclosure.

FIGS. 1A-1C illustrate examples of DMA read-modify-
write operations that may be performed in the high-speed
storage system of this disclosure.

FIG. 2 illustrates an exemplary embodiment of an 1/O
module that may be used in the high-speed storage system of
this disclosure.

FIG. 3 illustrates an alternative exemplary embodiment of
an I/O module that may be used in the high-speed storage
system of this disclosure.

FIG. 4 illustrates one exemplary approach for implement-
ing a crossbar module of the type described above in connec-
tion with FIG. 1.

FIG. 5 illustrates an exemplary embodiment of a memory
card that may be used in the system of the present disclosure.

FIG. 6 illustrates an alternative embodiment of a memory
card that may be used in the high-speed storage system of the
present disclosure.

FIG. 7 illustrates an alternative high-speed storage system
in which I/O modules communicate directly with memory
boards without using crossbar modules.

FIG. 8 illustrates an exemplary embodiment of a high-
speed memory board that may be used in the high-speed
storage system of FIG. 7.

FIG. 9 illustrates portions of an exemplary high-speed
memory board in greater detail.

FIG. 10A illustrates an exemplary embodiment of a seri-
alizer/deserializer and packing module for a high-speed
memory board.

FIGS. 10B-10D illustrate an exemplary embodiment of a
first-in-first-out (FIFO) storage buffer for a high-speed
memory board.

FIG. 11 illustrates an exemplary embodiment of a multi-
channel FIFO buffer for a high-speed memory board.

FIGS. 12 and 12A illustrate an exemplary process of mov-
ing data from an error correction and data protection circuitto
output FIFO buffers of a high-speed memory board.

FIGS. 13A and 13B illustrate an exemplary process for
moving data over multiple individual high-speed serial com-
munication links.

FIGS. 14A-14D illustrate exemplary processes for avoid-
ing improperly “intermingling” data from different WRITE
operations as the data is moved over the high-speed serial
communication links.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 15 illustrates an exemplary process for arbitrating
between READ and WRITE access for data moved over the
high-speed serial communication links in the high-speed stor-
age system of this disclosure.

FIG. 16 illustrates an exemplary controller and the connec-
tions between the controller and physical RAM memory in
the high-speed storage system of this disclosure.

FIG. 17 illustrates an exemplary operation of the controller
of FIG. 16 over two basic memory cycles in the high-speed
storage system of this disclosure.

DETAILED DESCRIPTION

The Figures described above and the written description of
specific structures and functions below are not presented to
limit the scope of what Applicants have invented or the scope
of the appended claims. Rather, the Figures and written
description are provided to teach any person skilled in the art
to make and use the inventions for which patent protection is
sought. Those skilled in the art will appreciate that not all
features of a commercial embodiment of the inventions are
described or shown for the sake of clarity and understanding.
Persons of skill in this art will also appreciate that the devel-
opment of an actual commercial embodiment incorporating
aspects of the present inventions will require numerous
implementation-specific decisions to achieve the developer’s
ultimate goal for the commercial embodiment. Such imple-
mentation-specific decisions may include, and likely are not
limited to, compliance with system-related, business-related,
government-related and other constraints, which may vary by
specific implementation, location and from time to time.
While a developer’s efforts might be complex and time-con-
suming in an absolute sense, such efforts would be, neverthe-
less, a routine undertaking for those of skill in this art having
benefit of this disclosure. It must be understood that the
inventions disclosed and taught herein are susceptible to
numerous and various modifications and alternative forms.
Lastly, the use of a singular term, such as, but not limited to,
“a,” 1s not intended as limiting of the number of items. Also,
the use of relational terms, such as, but not limited to, “top,”
“bottom,” “left,” “right,” “upper,” “lower,” “down,” “up,”
“side,” and the like are used in the written description for
clarity in specific reference to the Figures and are not intended
to limit the scope of the invention or the appended claims.

Exemplary Storage System

Turning to the drawings and, in particular, FIG. 1, a high-
speed storage system 100 constructed in accordance with
certain teachings of this disclosure is illustrated. In general,
the high-speed storage system 100 receives data-related
requests, such as READ and WRITE requests, from external
host devices and processes those requests to store and/or
retrieve data to/from physical memory.

The exemplary storage system 100 includes and utilizes a
plurality of input/output modules, high-speed serial commu-
nication channels, configurable crossbar modules, parallel
memory buses, and physical memory cards to provide a con-
nective, high-bandwidth storage system. Additional details of
the system and its many novel aspects are provided below.

Referring to FIG. 1, the system 100 includes a plurality of
input/output (I/O) interface modules 102, 104, 106, 108 and
110. Inthe example, five I/O modules are illustrated, although
the number of I/O modules is not critical and is subject to
change. Each I/O module is coupled to one or more external
host devices via a host communication channel (1024, 104a,
106a, 108a and 1104, respectively). The channels 1024,
104a, 1064, 1082 and 1104 allow external devices—such as
servers or any other device that can operate as a host—to



US 9,110,831 B2

5

provide and/or receive commands, instructions and data
to/from the I/O interface modules 102,104, 106,108 and 110.

The host communication channels may take various forms
and adhere to a variety of protocols including, but not limited
to, Fibre Channel, InfiniBand, Ethernet, and Front Panel Data
Port (FPDP). The precise physical and logical construction of
the communication links is not critical to the disclosed sys-
tem, although to take full advantage of the benefits provided
by the disclosed system, it is preferable that the host commu-
nication links be capable of supporting high-bandwidth data
transfers.

In the example of FIG. 1, each of the I/O modules 102, 104,
106, 108 and 110 is coupled by a plurality ot high-speed serial
communication channels (collectively labeled as 115 in FIG.
1) to four configurable crossbar modules 120, 122, 124 and
126. These channels allow the I/O modules to communicate
commands, instructions and/or data to the crossbar modules
as explained in more detail below.

In the illustrated example, there are four crossbar modules
120,122,124 and 126, although it will be appreciated that the
number of crossbar modules is not critical and can vary. In
FIG. 1, each of the four crossbar modules is coupled to each
of the five /O modules via a distinct serial system commu-
nication channel. Alternative embodiments are envisioned in
which one or more of the crossbar modules is coupled to
fewer than all of the I/O modules.

As reflected in FIG. 1, in the exemplary system, each
crossbar module is coupled by a plurality of parallel memory
buses to a grouping of memory cards. For example, in the
illustrated example, crossbar module 120 is coupled to a first
group of memory cards 140 by a first group of parallel
memory buses 130. In a similar manner, crossbar modules
122, 124 and 126 are coupled to memory card groups 142,
144 and 146 via parallel memory bus groups 132, 134 and
136, respectively. In the illustrated example, each crossbar
module is coupled to a group of five memory cards by five
multiplexed parallel buses that may each be used to commu-
nicate control, commands, or monitoring information, as well
as to transfer data. It will be appreciated that the number of
memory cards and the type of memory interface bus can vary
without departing from the teachings of this disclosure.

In the illustrated example, each memory card, and there-
fore each group of memory cards, will generally correspond
to a particular range of storage locations. The particular range
may be an actual physical address range (e.g., a range of
addresses in which each address corresponds to a specific
physical storage location associated with the memory card) or
a logical address range (e.g., a range of logical addresses in
which each logical address can be mapped by a controller on
the memory card—or an external controller—to a physical
storage location associated with the memory card).

In the example of FIG. 1, the overall system 100 will
present a number of available storage addresses to the exter-
nal hosts, and each memory card will generally correspond to
a particular range of the addresses presented by the system
100. In addition, because each group of memory cards is
associated with a particular range of addresses, each crossbar
is also associated with the range of addresses corresponding
to the group of memory cards to which it is connected.

In the system 100 of FIG. 1, a system controller 150 is
coupled to each of the I/O modules 102, 104, 106, 108 and
110 and to each of the crossbar modules 120, 122, 124 and
126. Although the system controller connects to all five /O
modules in FIG. 1, only one such connection is illustrated.
Likewise, only one of the four connections between the sys-
tem controller and the crossbar modules is shown. In general,
the system controller 150 provides timing and synchroniza-

25

30

40

45

6

tion signals, although it could be used to perform monitoring,
reporting and other supervisory tasks.

In general operation, each of the /O modules receives
external data-related requests over its host communication
links from an external host device to which the I/O module is
connected. Each I[/O module processes these data-related
requests to enable the storage and/or retrieval of data to/from
the storage system 100. In the embodiment of FIG. 1, the data
requests are received, and responses are returned, in the form
of distinct communication “packets,” although alternative
communication protocols may be used.

While the precise protocol details depend upon the appli-
cation, the external protocol should be selected for low com-
munication overhead, promoting a high data throughput. In
the system of FIG. 1, the communication packets received
and processed by the I/O modules will typically include a
header and, if the packet is to transport data, a data payload.
While the exact content and format of the header will vary
from application to application, the header will typically
include: (a) an identifier indicating the type of request (e.g.,
whether the request is a WRITE request to store data within
the system or a READ request to retrieve data previously
stored within the system); (b) an identifier indicating a par-
ticular ADDRESS associated with the request (e.g., a specific
logical or physical “address” that, for a WRITE request, will
generally identify a location at which the storage of data
associated with the request is to begin, or, for a READ
request, a location at which the retrieval of data associated
with the request should begin—each of these addresses some-
times referred to as a “TARGET ADDRESS”); and, for some
systems, (¢) an identification of the source of the data-related
request (sometimes referred to as a “SOURCE ADDRESS”);
and (d) an identifier indicating the amount of data associated
with the request (e.g., an indication of the number of bytes,
pages, or other quantity of data, to be stored in or retrieved
from the system as part of the request). For some communi-
cation protocols, all external data-related requests are pre-
sumed to be associated with a specific quantum of data, such
as a specifically sized page of data or a specific number of data
words. In such protocols, it may not be necessary to specifi-
cally designate the amount of data associated with a specific
external request, since it will be implicit that the request
concerns the standard quantum of data for the particular pro-
tocol.

Just as external devices issue data-related requests to their
attached /O modules, the I/O modules also issue requests,
termed DMA (direct memory access) requests, or simply
DMAs, to their connected crossbar modules and their
attached memory cards. Each external request may require
access to a range of system addresses spanning multiple
memory cards and crossbar modules. Even if a particular
external request requires access to only one memory card, the
quantity of data associated with the external request may
exceed the maximum quantity of data associated with a single
DMA request. For this reason, an /O module may issue more
than one DMA request for each external request that it
receives. In this scenario, the DMA requests are directed to
memory cards in such a manner that data storage or retrieval
occurs at the correct physical locations within the system. In
the case of an external READ request, for example, the I/O
module will issue one or more DMA READ requests in order
to “collect” the requested data from the various locations in
which it is stored. In the case of an external WRITE request,
the I/O module will generally issue one or more DMA
WRITE requests in order to “deliver” all of the received data
to the various locations at which it should be stored.



US 9,110,831 B2

7

In general, DMA WRITE requests are organized into
“packets,” with the request and its associated data residing
within the same packet. DMA READ requests, on the other
hand, generally contain only the request information (ad-
dress, data quantity, et cetera). The responses to each of these
request types are roughly complementary. For each DMA
WRITE request issued by the /0O module, the crossbar will
return a DMA WRITE response packet containing, at a mini-
mum, status information indicating the success or failure of
the WRITE operation. For each DMA READ request issued
by the I/O module, the crossbar will return a DMA READ
response packet containing both the requested data and, at a
minimum, status information indicating the validity of the
returned data.

In one embodiment in which each of the memory cards
within the system utilizes Flash memory, each DMA request
specifies the transfer of a fixed quantity of data, with the fixed
quantity being equal to the quantity of data stored within a
single Flash memory “page.” A page, in this example, is gen-
erally the smallest amount of information that can be dis-
cretely written to the Flash memory.

In the system 100 of FIG. 1, DMA requests are generally
defined to transfer a fixed quantity of data (4 Kbytes) to and
from addresses that are aligned on fixed address boundaries (4
Kbytes). In some cases, it is possible that the range of address
spanned by an external WRITE request will not be aligned on
these fixed DMA request address boundaries. As shown in
FIGS. 1A-1C, an external WRITE request may begin at an
address that does not correspond to the allowed starting
address of a DM A request. Similarly, a DMA WRITE request
may end at an address that does not correspond to the ending
address of a DMA request. When this “misalignment” occurs,
the I/O card may perform one or more read-modify-write
(RMW) operations. In a read-modify-write operation, the [/O
module issues a DMA READ request to retrieve data from
system memory from an address range that straddles the
beginning and/or end of an external WRITE request. The I/O
module then modifies (replaces) a portion of this retrieved
data with external data from the unaligned WRITE request,
and then returns this modified data to system memory by
issuing a complementary DMA WRITE request. In this way,
the /O module enables the storage of data into system
memory at address ranges that do not adhere to the alignment
restrictions of the individual DMA requests.

FIG. 1A shows an example of a “contained within” case,
where an external WRITE request specifies an address and
quantity of data 160 that is wholly contained within one page,
but which will cause a read-modify-write operation to be
performed because the starting address is not aligned with a
DMA address boundary. In this case, only one DMA READ
request is needed. The new (modified) data is overlaid in place
of the previously stored data with a DMA WRITE request
issued that uses the same (aligned) address as the DMA
READ request. FIG. 1B shows an external WRITE request
with a specified address and quantity of data 170 that
straddles two Flash pages. This “straddle” case will generate
two DMA READ requests to retrieve the data and subse-
quently two DMA WRITE requests to return the new data
image. FIG. 1C shows an external WRITE request whose
specified address and quantity of data 180 spans across three
pages. In this “spanning” case, the I/O card will issue a DMA
READ request for the first page, overlay the new data and
issue a DMA WRITE request to commit the changes. Since
the next page will be completely overwritten by the new data,
the 1/O card will not need to perform a read-modify-write
operation on this page and will simply issues a DMA WRITE
request to the aligned address. The remainder of the new data

20

40

45

50

55

8

set, however, does not completely fill the third page. There-
fore, the /O card will perform a read-modify-write for this
page in the previously described manner. It will be appreci-
ated that these three cases are only a subset of the types of
external WRITE request operations that can be performed
and are merely intended to illustrate the read-modify-write
operation.

While the structure of external requests is generally proto-
col-dependent, the internal DMA request/response protocol
is generally fixed for a particular system and is designed to
maximize system performance. In the system of FIG. 1, the
DMA requests and DMA responses are structured as packets
including a header and, if the packet is to transport data, a data
payload.

DMA requests typically include: (a) an identifier indicat-
ing the type of DMA request (i.e., whether the DMA request
is a WRITE request to store data within the system or a READ
request to retrieve data previously stored within the system);
(b) an identifier indicating a particular ADDRESS associated
with the DMA request (e.g., a specific logical or physical
“address” that, for a DMA WRITE request, will generally
identify a location at which the storage of data associated with
the request is to begin, or, for a DMA READ request, a
location at which the retrieval of data associated with the
request should begin); (c¢) an identifier indicating the I/O
module from which the DMA request originated; and (d) a
“tag” that, for each I/O module, uniquely identifies specific
DMA requests originating from that module. For a DMA
WRITE request, the request also includes the data to be stored
in system memory for that request. In the system 100 of FIG.
1, the quantity of data associated with each DMA request is
fixed. For systems in which the quantity of data is variable, the
header may also include (e) an identifier indicating the
amount of data associated with the request.

DMA responses typically include (a) an identifier indicat-
ing the type of DMA response (i.e., whether the response
corresponds to a DMA WRITE request or a DMA READ
request), (b) a “tag” that, for each I/O module, may be used by
the /O module to uniquely associate each DMA response
with its corresponding DMA request, and (c) a status indica-
tor that, for a DMA WRITE response, will indicate the suc-
cess or failure of the corresponding write operation, or, for a
DMA READ request, the validity of the retrieved data. For a
DMA READ response, the response also includes the data
requested by the original DMA READ request.

In the system 100 of FIG. 1, an [/O module will respond to
an external data-related request by, among other things, mini-
mally processing the request to determine whether it is a
READ request or a WRITE request and to determine the
crossbars (and possibly, the memory boards) to which the
corresponding DMA requests must be directed in order to
satisfy the external request.

After the external data-related request is minimally pro-
cessed by the I/0 module as provided above, the components
of'the system will operate to satisty the request. For example,
an I/O module will initially process each external data-related
request to identify its type (READ or WRITE), as well as to
determine the specific DMA requests that must be issued to
satisfy the external request. The I/O module will then deliver
the necessary DMA requests to the appropriate crossbar mod-
ules for further processing. The crossbar modules, in turn,
will (a) determine the memory card to which each received
DMA request should be directed, (b) convert each received
DMA request from its serial format to a parallel format suit-
able for presentation to a memory card, and then (c) forward
all or part of each DMA request to the memory card whose
address range spans the address associated with the DMA



US 9,110,831 B2

9

request. As described in more detail below, circuitry within
the memory card will further process the DMA request to
either store provided data in physical memory (for a DMA
WRITE request) or retrieve data from physical memory (fora
DMA READ request). It is important to note that the data
payload associated with each DMA WRITE request is gen-
erally delivered as part of the request. In some embodiments,
there may be an acknowledgment (ACK) signal between the
crossbar modules and the memory cards to confirm that the
data has been successfully transmitted to the memory cards.

By using the combination of high-speed serial system com-
munication links for the I/O modules and the crossbar mod-
ules, configurable crossbar modules, and high-speed parallel
memory communication links for the crossbar modules and
the memory cards, the storage system 100 provides an
extremely high-bandwidth system.

In the example discussed above, the high-speed serial com-
munication links coupling the I/O interface modules to the
crossbar modules are used to carry both command and control
information (e.g., information of the type found in the header
of'a DMA request) and data (e.g., information provided in a
data payload). Alternative embodiments are envisioned in
which some additional minimal serial communication links
are used to provide for communications that do not involve
the transfer of data of the type received in a data payload. For
example, embodiments are envisioned wherein a relatively
low-bandwidth, low-speed serial communication link could
be used for specific categories of communication, thereby
offloading some amount of traffic from the high-speed links
and achieving a corresponding boost in the performance of
these links. Each DMA READ request and DMA WRITE
response, for example, could be transmitted in this fashion,
reserving the high-speed serial links for DMA WRITE
requests and DMA READ responses, both of which transport
data within their respective packets. Since the DMA READ
request and the DMA WRITE response do not transfer any
data payload, they are generally much smaller in size and
could utilize a slower communication link without a signifi-
cant performance penalty. In an alternative embodiment,
DMA READ requests and DMA WRITE responses may be
transferred over an alternative low-bandwidth serial channel
or broadcast over a separate shared high-speed link to/from
all of the crossbars.

A high-speed serial link could also be used to connect all of
the crossbars to all of the [/O modules using a multi-drop bus
to provide this sideband data at a signal rate similar to the
data. Alternatively, the sideband link could be implemented in
a ring structure. In both cases, this would reduce the number
of point-to-point connections in the system at the cost of
added arbitration logic and hardware, but with the added
benefit of higher data throughput and bandwidth.

Additional details concerning the specific elements dis-
cussed above, and alternative embodiments of the elements
and/or the overall system are provided below.

The I/O Modules

The I/O modules of FIG. 1 may take many forms. One
exemplary embodiment of a suitable /O module is provided
in FIG. 2.

Referring to FIG. 2, an exemplary /O module 200 is illus-
trated. In this example, the I/O module 200 provides an inter-
face having two separate Fibre Channel (“FC”) ports (201 and
203), each allowing the specific I/O module 200 to connect to
a Fibre Channel Host Bus Adapter (not illustrated), thereby
allowing an external host to access the system 100 as a SCSI
device. Each port (201 or 203) includes a single transmit link
and a single receive link, with each link operating at either
2.125 gigabits per second (Gb/s) or 4.25 Gb/s. Each port can

35

40

45

55

10

support Point-to-Point and Arbitrated Loop Fibre Channel
protocols. It will be appreciated that this physical interface,
and the SCSI and Fibre Channel (FC) protocols, are exem-
plary and that other physical interfaces and protocols can be
used.

Referring to FIG. 2, the exemplary /O module 200
includes optical to electrical converters 202a and 2025 for
converting information between optical and electrical for-
mats. In general, each of these devices (202a and 202b)
converts signals received on its external optical receive links
(201 or 203) into electrical signals that are then forwarded to
a high-speed controller 204. Likewise, each of these devices
converts electrical signals received from the high-speed con-
troller 204 into optical signals that are transmitted across its
external optical transmit links. Known optical to electrical
converters can be used.

The optical to electrical converters, as alluded to above, are
coupled to a high-speed controller 204. In the example of
FIG. 2, the high-speed controller 204 is a configured field
programmable gate array (FPGA), for example a Xilinx Vir-
tex-4 FPGA device. The controller 204 is coupled by a com-
munication link to a programmable microprocessor (CPU)
206, such as a Freescale MPC8547 processor 206, and to
memory 208. In the illustrated example, memory 208 is
formed from DDR memory components.

As can be seen, the controller 204 provides four high-speed
serial system communication channels 210, 212, 214 and
216. The processor 206 and the controller 204 together imple-
ment the protocol conversion function between the external
Fibre Channel ports (201 and 203) and the four serial system
communication channels 210, 212, 214 and 216. In the illus-
trated example, each of the serial system communication
channels comprises a full-duplex physical layer, including
both a transmit (TX) sub-channel and a receive (RX) sub-
channel. Each sub-channel further comprises two distinct 5
Gb/s serial communication links that are bonded together to
form a single sub-channel capable of 10 Gb/s data transfer
speeds. In this example, data is 8 B/10 B encoded before it is
transmitted over the serial system communication channels,
resulting in a data transfer rate of 8 Gb/sec (or 1 GByte per
second (GB/sec)). Alternative encoding schemes (e.g., 64
B/66 B encoding) could also be utilized. In the example of
FIG. 2, each serial communication channel is implemented
using a multi-gigabit transceiver (MGT) module available
within a Xilinx Virtex-4 FPGA device, although it is appre-
ciated that other similar methods of implementation could be
employed without departing from the teachings of this dis-
closure. Available procedures for bonding communication
links, such as those enabled by the Xilinx Virtex-4 family of
FPGA devices, may be used to form the communication
channels. Alternatively, other bonding schemes associated
with other serialization/deserialization (SerDes) protocols
may be utilized.

In the example of FIG. 2, the I/O interface module 200
provides for four serial system communication channels 210,
212, 214 and 216, each connected to a different crossbar
module. The use of the four full-duplex serial system com-
munication channels collectively provides a potential 4
GB/sec read bandwidth and 4 GB/sec write bandwidth for
each I/O module. Given that the system 100 of FIG. 1 utilizes
five I/O modules, the exemplary illustrated system would
have an overall read bandwidth of 20 GB/sec and an overall
write bandwidth of 20 GB/sec.

In general, the high-speed controller 204 receives and pro-
cesses external data-related requests received over the FC
interfaces 201 and 203. As described above, each external
data-related request will typically include a header, indicat-



US 9,110,831 B2

11

ing: (a) whether the request is a READ or a WRITE request
and (b) the TARGET ADDRESS. The header may optionally
indicate (c) the SOURCE ADDRESS, as well as (d) an indi-
cation of the quantity of data associated with the request. For
WRITE requests, the requests will also include a data pay-
load. The high-speed controller 204 will process the request
and may provide much of the header information (but not any
data payload) to the processor or CPU 206. The CPU 206 will
manage at least some portion of the FC protocol and assist in
the management of the overall system interface.

As discussed previously, the high-speed controller 204 and
CPU 206 work together to manage the external Fibre Channel
links. Aside from some minimal CPU assistance, the high-
speed controller 204 in most embodiments is solely respon-
sible for issuing the internal DMA requests that are required
to satisfy each of the external data-related requests. In par-
ticular, the high-speed controller 204 determines the particu-
lar DM A requests that must be issued, and to which crossbars
the DMA requests must be issued, in order to satisfy each
external request. Once the high-speed controller identifies the
appropriate crosshar modules and DMA requests required to
satisfy an external request, it begins issuing DMA requests to
the appropriate crossbars. In general, the number of outstand-
ing DMA requests (those requests for which a response has
not yet been received) that may be issued by an /O module
200 is limited by the size of the tag field in the DMA header.
For relatively small transfers, the number of required DMA
requests will be small and the high-speed controller 204 can
issue all of them without waiting for the receipt of any
responses. For large transfers, the number of required DMA
requests may be large, and the high-speed controller 204 may
be forced to delay the issuance of DMA requests. Given an
8-bit tag value, for example, the high-speed controller could
initially issue 256 DMA requests without reusing any tag
values. Each outstanding DMA request would be tagged
uniquely, enabling the high-speed controller to associate each
DMA response with its corresponding DMA request. As
responses to the DMA requests are returned, the high-speed
controller could begin to reuse tags from completed DMA
requests (those for which a DMA response has been
received), thereby enabling the issuance of subsequent DMA
requests.

In general, DMA requests and their corresponding DMA
responses are transferred over the serial system communica-
tion channels 210, 212, 214, and 216. Because each 1/O
module provides for four serial communication channels, it
can independently transmit and/or receive data to/from four
different crossbar modules simultaneously or nearly simulta-
neously.

As described earlier, the high-speed controller 204 is
responsible for delivering READ and WRITE DMA requests
to the correct crossbar modules in order to satisty each exter-
nal data-related request. In one embodiment, the high-speed
controller 204 determines which crossbar module should
receive each DMA request through the use of a lookup table
maintained in the high-speed controller memory 208. In this
embodiment, the controller 204 will access and maintain a
look-up table that will include information that correlates a
specific range of addresses within the total range of addresses
presented by the system with a specific crossbar module. One
benefit of this approach is that it provides a degree of flex-
ibility in the configuration and re-configuration of the system.
Inyet a further embodiment, the look-up table within memory
208 will further associate a specific range of presented
addresses with a given memory card, and the various memory
cards with the crossbar modules, such that a received address

10

15

20

25

30

35

40

45

50

55

60

65

12

will correlate to a given crossbar module and to a specific
memory card coupled to that given crossbar module.

In an alternative embodiment, the relationship between a
given crossbar and a received address is “hardwired” such
that a given address range will always correspond to a specific
crossbar module.

In yet another embodiment, the relationship between a
given crossbar and a received address is dynamic, thereby
enabling a failing or otherwise unusable memory card or
crossbar to be “remapped” to another memory card or cross-
bar.

DMA transfers issued by an [/O module, such as I/O inter-
face module 200 of FIG. 2, may specity the transfer of either
afixed or variable quantity of data. For embodiments in which
the DMA transfer size is fixed, it may not be necessary for the
DMA requests to provide information concerning the quan-
tity of data to be transferred. In the embodiment in which the
memory cards use Flash memory, the DMA transfer size is
fixed to be the amount of data stored within a single Flash
memory page.

A DMA operation may transfer variable amounts of data.
In such embodiments, each DMA request will typically
include an indication of the amount of data to be transferred
(often in terms of multiples of a minimal quantum of data).

During DMA WRITE operations, regardless of whether
DMA transfers are performed using a fixed or a variable
transfer size, the high-speed controller 204 will queue the
data that it receives from an attached external host device. For
larger data transfers, consisting of multiple DMA WRITE
requests, the 1/O interface is not required to wait for the
receipt of all external data before beginning to issue DMA
WRITE requests. Instead, the high-speed controller may
begin to issue DMA WRITE requests, and continue to issue
DMA WRITE requests, as soon as enough data is available to
support each DMA WRITE request.

During DMA READ operations, the high-speed controller
will queue data flowing in the opposite direction (out of
system memory). In this case, the high-speed controller will
issue a number of DMA READ requests and then wait for
DMA READ responses to be returned from the individual
crossbar modules. Because these responses may be received
in a different order from their corresponding DMA READ
requests, the high-speed controller must queue the data
received from the crossbars until the data may be delivered in
its correct order. Given a scenario in which an external data
request requires the issuance of 256 DMA READ requests, it
is possible that the last DMA READ response will correspond
to the first DMA READ request, thereby requiring the I/O
interface to queue the data from 256 DMA transfers. The [/O
interface may unload data to the external requester (host
device) only as long as the data can be delivered sequentially.

In the manner described above, the 1/O interface module
200 can receive data-related requests from an external host,
access memory within the system 100 to fulfill the request,
and provide requested data externally to host devices.

It should be appreciated that the /O interface module of
FIG. 2 is but one example of an I/O interface module that can
be used in the system of the present disclosure. Alternative
1/O interfaces can be used. One example of an alternative
interface is provided in FIG. 3.

FIG. 3 illustrates an alternative /O interface module 300
that is capable of receiving data-related requests through a
plurality of high-speed InfiniBand ports (collectively referred
to as 301).

Referring to FIG. 3, the exemplary alternative [/O module
300 includes an InfiniBand interface chip 302 that is capable
of receiving and transmitting data-related requests and



US 9,110,831 B2

13

responses over a plurality of InfiniBand ports 301. The Infini-
Band interface chip may be a standard InfiniBand chip, such
as those available from Mellanox.

In general, the InfiniBand interface chip 302 receives data-
related requests via the InfiniBand ports 301 and minimally
decodes the received requests at least to the extent that it
identifies the command header and, for external WRITE
requests, the data payload. The interface chip 302 will then
make the command header information available to a control
CPU 306 though the use of a switching element, routing
element or shared memory element 305, which—in the
example of FIG. 3—is a PCI Express (PCle) switch. Using
the switching/routing/memory element 305, the interface
chip 302 will also make the received data available to a
high-speed controller 304 (which may be a configured
FPGA). The high-speed controller 304 provides multiple
serial system communication channels 310,312, 314 and 316
to the crossbar modules and operates on the received data-
related requests to provide and receive information and data
to and from the crossbar modules in a manner similar to that
described above in connection with high-speed controller 200
of FIG. 2.

It will be appreciated that the I/O interface modules 200
and 300 discussed above are exemplary only and that other
types of /O interface modules, including those using differ-
ent physical layers, different communication protocols and
discrete devices (as opposed to configured FPGAs) could be
used without departing from the present disclosure.

In general, the main requirement of an I[/O module is that it
be able to receive and respond to externally provided data-
related requests and that it be able to convey those requests
(and receive information and data to respond to the requests)
to multiple crossbar modules over a plurality of high-speed
system communication channels.

The Crossbar Modules

As described above, the overall general functions of each
crossbar module in the system of the present disclosure are to:
(a) receive DMA requests from the I/O modules and provide
those DMA requests (plus any associated data payloads) to
the appropriate memory cards connected to the crossbar mod-
ule and (b) receive retrieved data from the memory cards
connected to the crossbar and to provide the retrieved data
(and potentially some related information) to the I/O modules
associated with the retrieved data.

Various approaches can be used to implement the crossbar
modules of the disclosed systems. FIG. 4 illustrates one
exemplary approach for implementing a crossbar module of
the type described above in connection with FIG. 1.

Referring to FIG. 4, an exemplary crossbar module 400 is
illustrated. While the crossbar module can be implemented
through the use of discrete circuitry, application specific inte-
grated circuits (ASICs), or a mix of the two, in the embodi-
ment of FIG. 4, the crossbar module 400 is implemented
though the use of a configured FPGA such as a Xilinx Virtex
4 FPGA.

In the example, the configured FPGA is configured to
provide five serial systems communications ports 402, 404,
406, 408 and 410. Each serial communications port is con-
figured and connected to provide high-speed, bi-directional
communication channels between itself and one of the high-
speed communication ports of an I/O module. Thus, in the
example, because the crossbar module 400 provides five full-
duplex communication ports, it can communicate simulta-
neously and independently with each of the /O modules in
the system 100. Thus, communication port 402 can be
coupled to one of the serial communication ports of 1/O
interface module 102, port 404 to a port of I/O interface

10

15

20

25

30

35

40

45

50

55

60

65

14

module 104, and so on, such that a serial connection exists
between each of the /O modules and the crossbar module
400.

In addition to providing the five serial communication
ports described above, the crossbar module 400 of FIG. 4 also
provides for multiple parallel communication buses used to
enable communications between the crossbar module 400
and a plurality of memory cards. In the example of FIG. 4,
there are five memory cards 412, 414, 416, 418 and 420, and
the crossbar module 400 communicates with the memory
cards using parallel buses. In the example of FIG. 4, commu-
nication between the crossbar module 400 and each of the
individual memory cards is accomplished using a parallel bus
that, in the example, includes a sixteen-bit (16) wide data bus
and a five-bit (5) wide control bus for each memory card.

In general operation, the crossbar module 400 primarily
serves as a means to receive DMA requests via one of the
serial system links, identify specific memory cards to which
the DMA requests should be directed, convert the received
DMA requests from a serial format to a parallel format, and
provide the parallel formatted DMA requests to the appropri-
ate memory cards. In addition, the crossbar module 400 will
typically receive data provided by a memory card, determine
which I/O module the data is intended for, and transfer the
received data to the appropriate [/O module over one of the
serial system communication links as a DMA response.

In the exemplary case, the crossbar module 400 commu-
nicates with each /O module using a serial interface bus, and
with each memory card using a parallel interface bus. It
should be noted that the implementation of the I/O interface
bus depends on the /O module, and the memory interface bus
depends on the memory card. Either bus could, in theory, be
implemented as either a serial or parallel interface, provided
that the bus can perform at the required data rates. The inter-
face buses are application-dependent, and the design deci-
sions affecting the selection of a particular bus should be
apparent to those skilled in the art. As an example, in order to
minimize connector density, the memory card interface could
be implemented as a high-speed serial connection similar in
nature to the /O module, simplifying the crossbar-to-
memory interface.

Since each of the buses connecting a crossbar port to an [/O
module is point-to-point, arbitration is minimal and regulated
by a mechanism designed to allow the crossbar to hold off the
1/0 bus if necessary to prevent over-run.

The configuration of an FPGA to perform these tasks
should be apparent to those of ordinary skill in the art having
the benefit of this disclosure.

The Memory Cards

The memory cards that may be used in the disclosed system
can take many forms. They can utilize a variety of memory
including random access memory of different types (such as
DDR RAM, DDR2 RAM, DDR3 RAM, and the like) and
Flash memory of different types (including MLC Flash
memory and SLC Flash memory, and the like). The structure
of'the memory cards can also vary depending, in part, on the
type of memory that is used.

FIG. 5 illustrates one exemplary embodiment of a memory
card 500 that utilizes Flash memory and that may be used in
the system of the present disclosure. In the example of FIG. 5,
the Flash memory is SLC Flash memory, although embodi-
ments in which ML.C Flash memory is utilized are also envi-
sioned.

Referring to FIG. 5, the Flash memory card 500 includes a
system controller 502 that receives information over a paral-
lel bus 504 coupling the system controller to one of the
crossbar modules (not illustrated in FIG. 5). The parallel bus



US 9,110,831 B2

15

504, as mentioned above, includes a sixteen-bit (16) wide
data bus and a five-bit (5) wide control bus. The DMA
requests provided by the crossbar module are received and
processed by the system controller 502. The system controller
502 handles the communication protocols between the
memory card and the crossbar module and may implement
functionality such as error correction for the management of
bus errors. In addition, the system controller 502 may also
partially process the received TARGET ADDRESS to deter-
mine which of the specific memory elements on the memory
card are associated with the TARGET ADDRESS.

In the exemplary system, the system controller 502 com-
municates with a number of individual Flash controllers 506,
508, 510 and 512 through direct connections. The system
controller 502 also communicates with a CPU 503 that can
also communicate with the individual Flash controllers. This
communication may be through a direct connection to the
Flash controllers, as shown in FIG. 5, or though a “pass-
through” connection, wherein the CPU 503 communicates
with the system controller 502 in order to access the Flash
controllers. This is typically done to reduce bus fan-out, and
is a design consideration that will be apparent to those skilled
in the art.

In the illustrated example, communication between the
system controller 502 and the Flash controllers 506, 508, 510
and 512 is accomplished using independent sixteen-bit (16)
wide parallel buses, with one such independent parallel bus
being coupled between the system controller 502 and each of
the individual Flash controllers 506, 508, 510, and 512. Simi-
lar independent sixteen-bit (16) wide parallel buses may be
used in embodiments where the CPU 503 communicates
directly with each Flash controller 506, 508, 510 and 512.

Each of the individual Flash controllers is coupled to a
physical Flash memory space 513,514, 515, and 516, respec-
tively, and to controller memory 517, 518, 519, and 520
(which may be DDR RAM memory, for example). In the
illustrated example, each physical Flash memory space (513-
516) is formed from ten independent Flash memory chips. In
operation, the Flash controller 502 will process DMA
requests to store provided data within a specified physical
Flash memory and to retrieve the requested data and provide
the same to the system controller 502. A number of different
types of Flash controllers may be utilized. One preferred
controller and its operation are described in more detail in
co-pending U.S. patent application Ser. Nos. 12/554,888,
12/554,891, and 12/554,892, filed Sep. 5, 2009, which are
hereby incorporated by reference.

Notably, because the system 100 of the present disclosure
operates in such a manner that the TARGET ADDRESSES
received by the 1/O interface modules are the addresses pro-
vided to the memory cards, the present system can readily be
used both with Flash memory (which ultimately requires a
translation for the received TARGET ADDRESS to a physi-
cal Flash address location) and with RAM memory (or other
memory that does not require a logical-to-physical address
translation). Moreover, because any conversion from TAR-
GET ADDRESS to physical Flash address occurs after the
DMA request is provided to the memory cards, the present
system enables the use of both Flash memory cards and RAM
memory cards. This is because the operation of the Flash
controllers in mapping a received TARGET ADDRESS to a
specific physical Flash address is largely transparent to the
interface bus coupling the crossbar modules to the memory
cards.

FIG. 6 illustrates an alternative embodiment of a memory
card 600 that utilizes RAM memory and that may be used in
the system of the present disclosure. In this embodiment, the

10

15

20

25

30

35

40

45

50

55

60

65

16

address that is provided to the memory card by the crossbar
module is used as a physical address for accessing RAM
memory. Referring to the figure, the memory card 600
includes a number of elements that may all be positioned and
affixed to a single multi-layer printed circuit board.

In general, the memory card 600 includes a system con-
troller 602 that, like the controller 502 from FIG. 5, receives
a DMA request from the crossbar module and processes the
request using the protocol adopted for that system (which
may include or be combined with error correction). The sys-
tem controller then passes the request, and any data payload,
to a memory controller 604 that can arrange for rapid DMA
transfers of received data to the appropriate physical address
corresponding to the TARGET ADDRESS (for a WRITE
request) or retrieve data from the RAM memory 606 (which
may be DDR, DDR2, DDR3 or any other high-speed RAM
memory) using a DMA transfer and provide that data to the
system controller 602 (for a READ request). It will be appre-
ciated that the directionality of the arrows shown in FIG. 6 are
only meant to depict an example of a WRITE operation. It
will also be appreciated that for implementation purposes,
both controller 602 and controller 604 can be combined into
one FPGA device.

Alternative System Embodiment:

In the system 100 described above, crossbar modules are
used to receive serially-transmitted data-related requests and
to convert those requests into parallel-transmitted requests
provided to memory cards. Alternative embodiments are
envisioned wherein the crossbar modules are eliminated and
the data-related requests are transmitted serially directly from
the 1/0 modules to the memory cards.

FIG. 7 illustrates an alternative storage system 700 in
which [/0 modules or devices can communicate directly with
memory boards using high-speed serial communication links
without the use of crossbar modules.

Referring to FIG. 7, the alternative storage system 700
includes a plurality of I/O modules 701, 702, 703, 704, 705,
706,707,708,709,710, 711, and 712, each being coupled to
one or more external hosts via one or more communication
channels. In the illustrated example, each /O module pro-
vides for a plurality of high-speed bi-directional full duplex
serial communication channels that allow each of the I/O
modules to communicate with each one of a plurality of
memory boards 740, 742, 744 and 746. In the example of F1G.
7, each /O module 701-712 provides eight serial communi-
cation ports, and each line connecting an I/O module and a
memory board is intended to reflect two separate full duplex
communication channels.

The /O modules 701-712 are coupled to the memory
boards 740, 742, 744 and 746 in such a manner that extremely
high bandwidth communications are enabled. For example,
the first [/O module 701 provides for eight serial data ports
(two for each of the memory boards). Thus, the maximum
data rate that the I/O module 701 can accommodate will be
eight times the maximum bandwidth of the serial communi-
cation channels.

In operation, the I/O modules 701-712 operate similar to
the I/O modules described above in connection with FIGS. 2
and 3. However, because the [/O modules of FIG. 7 provide
for a greater number of serial communication channels, they
enable the simultaneous and independent communication of
more data-related requests or responses. This results in a
higher bandwidth generally for the storage system 700 and
specifically between the /O modules 701-712 and the
memory boards 740, 742, 744 and 746. For example, because
the 1/0 module 701 provides for eight serial communication
ports (two for each of the memory boards), it could simulta-



US 9,110,831 B2

17

neously (or nearly simultaneously) and independently issue
two WRITE requests to each of the memory boards 740, 742,
744 and 746, for a total of eight simultaneously (or nearly
simultaneously) processed WRITE requests. Without the
crossbars, the same arbitration and hold-off mechanism, as
referred to in the original system 100, is located on each
memory board in some embodiments.

In the example of FIG. 7, each serial system communica-
tions link is used to pass both data and control information to
and from the /O modules or the communicating devices and
the memory boards. Among other things, each memory board
will receive digital data and will respond to WRITE requests
(to store digital data within specific locations in the physical
memory space on the memory board) and will respond to
READ requests (to retrieve and provide digital data stored
within specific locations of the physical memory on the
board). Because each high-speed serial communication link
can receive or transmit serial data at a very high rate (625
MB/sec in the present example), the system of FIG. 7 can
store and retrieve data at very high data rates. Daniel

FIG. 8 illustrates details concerning the structure of an
exemplary memory board 800 for use in the system 700 of
FIG. 7.

Turning to FIG. 8, the memory board 800 includes a stor-
age control unit 802 and a physical memory space 804 formed
from a plurality of individual memory chips. The memory
board further includes appropriate interface circuitry 806 to
allow the memory board to receive a plurality of serial com-
munication links. In FIG. 8, the interface circuitry 806 allows
the memory board 800 to receive inputs from twenty-four
serial communication links. In the example of FIG. 8, the
various components are all located on the same printed circuit
board 800.

The storage control unit 802 can be formed through the use
of a field programmable gate array, or “FPGA,” such as a
Virtex-6 FPGA (XC6VLX240T-2FFG1156CES) available
from Xilinx operating at 333 MHz. It will be understood,
however, that the storage control unit 802 could alternatively
be implemented using other types of FPGA devices, discrete
circuits, a programmed microprocessor, or a combination of
any and all of the above.

In the illustrated example, the physical memory space 804
is constructed using a plurality of double data rate dynamic
random access memory chips, DDR, such as DDR3-800
(MT4J128M8BY-25E) available from Micron Technologies,
Inc. operating at 333 MHz. It will be understood, however
that other forms of memory, such as alternative DDR devices,
Flash and other types of memory may be utilized without
departing from the teachings of this disclosure.

In the present example, the storage control unit 802 drives
288 external parallel data lines (better seen in FIG. 9) to the
physical memory space 804. Because the memory space uses
DDR memory clocked at 333 MHz, the high-speed memory
board of FIG. 8 will be capable of storing up to 576 bits of
digital information (512 bits of data and 64 bits of ECC) in the
physical memory space for each clock cycle, thus providing
an overall storage rate of approximately 24000 MB/sec for
data and ECC or 20.83 GB/sec for data alone.

FIG. 9 illustrates portions of the structure of an exemplary
high-speed memory board in greater detail. In particular, FIG.
9 illustrates structures within the storage control unit 802 of
FIG. 8 that may be used to receive digital data from a serial
communication link and operate on such data for storage
within the physical memory space 804.

Referring to FIG. 9, one of the high-speed serial commu-
nication links, serial link 900, is illustrated coupled to the
storage control unit 802. The high-speed serial communica-

20

35

40

45

55

18

tion link 900 is provided to a serializer/deserializer and pack-
ing module 912 which will be located within the storage
control circuit 802. This serializer/deserializer and packing
module 912, further explained in FIG. 10A, depicts the serial
link being input to a multi-gigabit transceiver (MGT) 1010,
which will be located within the storage control unit 802. The
MGT 1010 will receive serial data from the serial communi-
cation link and, on a periodic basis, convert the received serial
data to parallel data. Moving ahead to the example of FIG.
10A, the MGT 1010 receives serial data and provides parallel
32-bit wide data at 156.25 MHz.

In the example of FIG. 10A, the 32-bit wide parallel data
from the MGT 1010 is provided to a 256-bit wide, multiple
word deep first-in-first-out (FIFO) storage buffer 1012 in
such a manner that the received 32-bit wide data from the
MGT 1010 is packed into 256-bit wide data words. This
process is generally illustrated in FIGS. 10B-10D.

Referring to FIG. 10B, the 256-bit wide FIFO storage 1012
is schematically illustrated as packed with a 256-bit wide
word A1-A8. The method in which the illustrated system
packs the 32-bit wide data from MGT 1010 to form 256-bit
wide words is as follows. First, an initial 32-bit wide word, A1
in the example, will be received from MGT 1010. That initial
32-bit wide word Al will be stored in an initial data location,
as reflected in FIG. 10B. The next 32-bit wide word received
from the MGT 1010, A2 in the example, will be stored in a
second location, with the third word A3 stored in a third
location, and so on until eight words A1-A8 have been
received and stored in the FIFO 1012 to form the 256-bit wide
word A1-A8, as reflected in FIG. 10B.

Once the 256-bit wide word A1-A8 has been formed
through the process described above and another 32-bit wide
word, B1 in the example, is received from the MGT 1010, the
initial word A1-A8 will be shifted “down” to another location
within the FIFO 1012 and the newly received 32-bit wide
word will be stored in the initial location as reflected in FIG.
10C. This process will repeat until a second full 256-bit wide
word B1-B8 is constructed as reflected in FIG. 10C. The
process of receiving 32-bit words from the MGT 1010, pack-
ing the received 32-bit words into 256-bit words and shifting
the 256-bit wide words through the FIFO 1012 will continue
until the 256-bit wide memory locations within the FIFO
1012 are fully populated. An example of a more fully popu-
lated FIFO 1012 is illustrated in FIG. 10D.

While the “depth” of the stacking FIFO 1012 can vary from
implementation to implementation, in the example of FIGS. 9
and 10A-10D, the FIFO 1012 is at least thirty-two 256-bit
wide words deep. This is because, in the present example, a
group of thirty-two 256-bit wide words is the basic unit used
for data transfers to and from the physical memory space 804.
As such, each group of thirty-two 256-bit wide words will be
referred to herein as a basic memory cycle (“BMC”) unit. In
this example, each BMC unit will include 8,192 data bits
(32x256) or 1 KB of data.

Referring back to FIG. 9, the data from the packing FIFO
912 is provided to a multi-channel FIFO bufter 914—only
one channel of which is illustrated in FIG. 9. In the illustrated
example, the multi-channel FIFO buffer 914 is 256 bits wide,
can receive data at a rate of 256 bits/second, and is clocked at
a rate of 27.7 MHz. Data is provided from the serializer/
deserializer and packing module 912 to the multi-channel
FIFO buffer 914 using a “burst” transfer where a complete
BMC unit of data is transferred over thirty-two clock cycles.

Once a complete BMC unit of data is transferred from the
serializer/deserializer and packing module 912 to the multi-
channel FIFO buffer 914, the multi-channel FIFO buffer 914
will include a complete BMC unit of data in the form of 32



US 9,110,831 B2

19
consecutive 256-bit “words.” In the illustrated example, the
depth of the multi-channel FIFO buffer 914 is such that it will
be able to store multiple BMC units of data. This is generally
reflected in FIG. 11, where the contents of a multi-channel
FIFO butfer 914 are depicted as including three BMC units of
data (represented by blocks 1140qa, 11405 and 1140¢).

Referring back to FIG. 9, the data stored in the multi-
channel FIFO buffer 914 is provided to an error correction
and data protection circuit 916 via a 256-bit wide parallel data
bus operating at 333 MHz. The error correction and data
protection circuit 916 processes the received data to introduce
one or more error correction code bits (“ECC” bits) and to
process the data for enhanced protection against data corrup-
tion. Examples of ECC processing are known to those of
ordinary skill in the art, and any suitable ECC processing
mechanism may be used. In addition, the error correction and
data protection circuit may also implement other data protec-
tion techniques or transforms, such as “Chipkill” and other
techniques commonly used for enhanced data protection.
Chipkill, as understood by those having ordinary skill in the
art, is a form of advanced ECC developed by IBM that pro-
tects computer memory systems from any single memory
chip failure as well as multi-bit errors from any portion of a
single memory chip. Additional information regarding Chip-
kill may be found in the following paper, which is incorpo-
rated herein by reference: Timothy J. Dell, A White Paper on
the Benefits of Chipkill-Correct ECC for PC Server Main
Memory, (1997), IBM Microelectronics Division.

As a result of the operations of error correction and data
protection circuit 916, bits will be added to each 256-bit
“word” provided to the circuit, and the resultant output of the
circuit will be, in the example, 288 bits for each 256-bit input.
This 288-bit output will correspond to the input data provided
to the ECC and data protection circuit 916 and to the protec-
tion and ECC bits added by circuit 916.

The 288-bit wide outputs from the data protection circuit
916 are provided to two output FIFO buffers 918 and 920 via
a 288-bit wide parallel bus. In the example, this parallel bus is
clocked at 333 MHz. The data from the data protection circuit
is provided to the output FIFO buffers 918 and 920 in a
“ping-pong” manner such that the first 288-bit “word” from
the circuit is provided to one of the output FIFO buffers (e.g.,
output FIFO buffer 918) while the next 288-bit “word” is
provided to the other one of the output FIFO buffers (e.g.,
FIFO butffer 920) on the following clock cycle. In this manner,
the data corresponding to a complete BMC unit is placed into
the two output FIFO buffers 918 and 920 such that half of the
data is in each output FIFO buffer. In the example, the depth
of each output FIFO buffer 918 and 920 is such that each
buffer can store data corresponding to multiple BMC units.

This process of moving data from the circuit 916 to the
output FIFO buffers 918 and 920 is generally illustrated in
FIGS. 12 and 12A, where exemplary contents of the output
FIFO buffers 918 and 920 are illustrated after the transfer of
a BMC unit. As reflected in the figures, the data of the exem-
plary BMC unit is contained in both buffers, and the data that
makes up the complete BMC unit is “interleaved” across the
two output FIFO buffers 918 and 920.

Referring back to FIG. 9, the data from the two output
FIFO butfers 918 and 920 is provided to a high-speed, 576-bit
wide output memory buffer 922. In the example of FIG. 9,
each FIFO output buffer 918 and 920 provides 288 bits of data
and error protection information to the high-speed output
memory buffer 922 with each clock cycle and the input to the
high-speed memory buffer 922 is, in the example, clocked at
333 MHz. At this speed and data transfer rate, a complete
BMC unit of data (32 words) can be transferred in 16 clock

5

10

15

20

25

30

35

40

45

50

55

60

65

20

cycles. Here, 16 words are stored in each of the FIFO output
buffers 918 and 920, and thus 16 cycles are needed to transfer
the entire BMC.

The coupling between the output FIFO buffers 918 and 920
and the high-speed output memory buffer 922 is such that the
formerly “interleaved” data that was stored in the output
FIFO buffers 918 and 920 is combined to form a single,
properly ordered 576-bit “super-word” where the data is
reflective of the order in which it was originally received
across the high-speed serial communications link 900.

Referring back to FIG. 9, the data from the high-speed
output buffer is provided to the physical memory 804 (not
illustrated) over a 288 bit-wide parallel bus that is clocked at
333 MHz DDR. Because the DDR clock transfers data on
both clock edges, the data from the output memory buffer 922
is effectively transferred at a rate of 667 MHz. As a result, the
effective data transfer rate to memory of the circuit of FIG. 9
is 20.83 GB/sec.

For purposes of explanation, the example of FIG. 9 illus-
trates and describes the operation of the present system in
connection with only a single high-speed serial input, serial
input 701 in the example (see FIG. 7). In the full exemplary
system, up to 24 individual high-speed serial communication
links may be provided. The manner in which data from such
a system having multiple serial communication links is pro-
cessed by the present system is reflected in FIGS. 13A-13B.

Referring first to FIG. 13A, a system much like that dis-
cussed above in connection with FIG. 9 is illustrated. How-
ever, in the example of FIG. 13 A, the input MGT 1010 and the
packing FIFO buffer 1012 for the exemplary high-speed input
have been combined to form an input processing block 1370.
In addition, 11 other serial inputs 1371-1381 are shown, each
having its own corresponding input processing block. Each of
these input processing blocks operates like the circuitry
described above in connection with FIGS. 9 and 10A-10D to
be able to provide a complete BMC unit of data in a burst
mode manner to the multi-channel FIFO buffer 914.

Because of the design of the system of FIG. 13A, the
system can receive data at a very high rate such that, during
peak operating conditions, data from a WRITE operation is
almost always being provided to the multi-channel FIFO
buffer 914 and data from multi-channel FIFO buffer 914 is
almost always being provided to the error correction and data
protection circuitry 916.

The system of FIG. 13A, however, preferably processes
data from one-half of the high-speed serial communication
links provided by the described system. As shown in FIG.
13B, the exemplary system includes another set of circuits,
similar to those described above, including another multi-
channel FIFO buffer 914' that processes data from the remain-
ing 12 serial communication links and provides that datato a
second error correction and data protection circuit 916'.

As reflected in FIG. 13B, the second error correction and
data protection circuit 916' provides its output to the output
FIFO buffers 918 and 920 in a “ping-pong” manner. However,
in the exemplary system, the procedure for transferring data
from the second error correction and data protection circuit
916' operates “out-of-phase” with the first error correction
and data protection circuit 916 such that, while the first data
protection circuit 916 is transferring data to one of the output
FIFO buffers (e.g., the output FIFO buffer 918), the second
error correction and data transfer circuit 916' will be transfer-
ring data to the other output FIFO buffer (e.g., output FIFO
buffer 920). During the next clock cycle, the transfer will
“switch.” In this manner, data can, during each clock cycle,
always be delivered to both output FIFO buffers 918 and 920.



US 9,110,831 B2

21

To avoid improperly “intermingling” data from different
WRITE operations, the data provided by the first and second
error correction and data protection circuits 916 and 916' is
preferably transferred to the output FIFO buffers 918 and 920
in such a manner that it can be recombined to look like data
received across a single serial communication link. One
approach for accomplishing this is reflected in FIGS. 14A and
14B.

Referring to FIGS. 14A and 14B, during a first data transfer
operation, the first even word of the BMC unit ready to be
transferred from the first error correction and data protection
circuit 916 (e.g., Word0, a0) will be transferred by the first
circuit 916 to a portion of the output FIFO buffer 918 reserved
for the first circuit 916. At the same time, the first even word
(Word0, b0) from the BMC unit ready to be transferred from
the second error correction and data protection circuit 916
will be transferred to a portion of the output FIFO buffer 920
reserved for the storage of data from the second circuit 916'.
During the next clock cycle, the first odd word (e.g., Word1,
al) from the BMC in the first circuit 916 will be stored in a
reserved space of output FIFO buffer 920 and the first even
word (e.g., Wordl, b1) from the BMC in FIFO 916' will be
stored in a reserved space in output FIFO buffer 918. In this
method, data is always being transferred to both of the output
FIFO buffers 918 and 920 such that maximum bandwidth is
maintained.

In an alternative method, the writing of data from the
second error correction and data protection circuit 916' may
be delayed by one cycle so that all even words are stored in
output FIFO buffer 918 and all odd words are stored in output
FIFO buffer 920 (see FIGS. 14C and 14D).

In addition to providing for the circuitry for receiving and
processing data as reflected in FIG. 9 and the other figures
discussed above, each memory card may also include similar
structures (operating essentially in reverse) for retrieving data
from the RAM memory at a high data rate and unpacking the
received data such that it can be transferred across one of the
high-speed serial communications channel to an I/O interface
module, which may then provide the requested data to the
appropriate host.

In the illustrated example, the data and address lines cou-
pling the memory controller 802 to the physical RAM
memory 804 are such that—at any given time—only a READ
access or only a WRITE access can be accomplished. Thus, to
provide optimum performance, the controller 802 must
implement some form of arbitration, as shown generally in
FIG. 15. In one embodiment, this arbitration is accomplished
by including within the controller 802 an arbitration module
1504 that will receive the command header information for
each data-related request and store the information in a buffer
associated with the I/O interface module that provided the
request. In a preferred embodiment, the arbitration module
1504 will maintain separate buffers 1500 and 1502 for READ
operations and separate buffers 1501 and 1503 for WRITE
operations, such that the controller 802 will maintain in buft-
ered storage, on an I/O interface module by 1/O interface
module basis, a list of the READ and WRITE requests or
commands received from each I/O interface module. In gen-
eral, this list may be maintained on a time-stamped or time-
ordered basis and each entry in the list may include the com-
mand information associated with each data-related request
received from an I/O interface module, namely the TARGET
ADDRESS, word count (or other indication of the amount of
data to be transferred) and an indication of the transfer direc-
tion (e.g., whether it is a READ or WRITE operation).

10

15

20

25

30

40

45

50

55

60

22

To optimize performance, the READ and WRITE requests
may be processed as follows:

In general, the arbitration module 1504 will give prefer-
ence to READ requests and will, unless certain conditions
discussed below are met, process the READ requests in the
READ request buftfers for the various 1/O interface modules
on a first-come, first-served basis.

If the arbitration module 1504 and the controller 802 have
processed all of the READ requests such that no READ
requests are outstanding, the arbitration module 1504 and the
controller 802 will then process any outstanding WRITE
requests in the WRITE request buffers on a first-come, first-
served basis.

To avoid having too many WRITE requests outstanding,
and to help address latency and coherency issues, the arbitra-
tion module 1504 and the controller 802 will process a
WRITE request if it is determined that the number of out-
standing WRITE requests has exceeded a certain threshold
number. The arbitration module 1504 makes this threshold
exceeding determination by considering: (i) the total overall
number of outstanding WRITE requests from all of the I/O
interface modules collectively; (ii) the total number of out-
standing WRITE requests from a given I/O interface module;
or (iii) some combination of the above. For example, if both
the overall number of outstanding WRITE requests and the
number of WRITE requests for a given /O interface module
were considered, the arbitration module 1504 could have the
controller 802 process a WRITE request if either: (i) the
overall number of outstanding WRITE requests exceeded a
first threshold (in which case an outstanding WRITE request
could be handled based on a first-come, first-served basis) or
(i1) the number of outstanding WRITE requests for a given
1/O interface module exceeded a second threshold (which
may be lower than the first threshold), in which case the
arbitration module 1504 would have the controller 802 handle
a WRITE request from the specific /O interface module
associated with the over-threshold buffer on a first-come,
first-served basis.

Furthermore the arbitrator can process a WRITE request if
it is determined that the stored data within one of the output
FIFO buffers associated with the reception of data has
exceeded a certain limit, such as an amount over %4 of the
storage capacity of the output FIFO buffer, in which case a
WRITE request associated with that output FIFO buffer
would be processed so that the I/O interface modules can
continue to send data and data-related requests without inter-
ruption or throttling.

In addition to the above, the arbitration module 1504 may
also control how READ and WRITE requests are processed
so that data coherency is maintained. For example, if it is
determined that an outstanding READ request is directed to a
specific address and that there is an earlier-in-time outstand-
ing WRITE request, the arbitration module 1504 can have the
controller 802 process the outstanding WRITE request to
ensure that the appropriate data is returned in response to the
READ request.

Memory Chip Access

There are various approaches and methods that the
memory controller 802 canuse to transfer datato and from the
physical RAM memory. In one embodiment, the controller
802 can operate as, or include, a DDR3 memory control
module that receives the command information from the arbi-
tration module 1504 along with a start indicator to control the
timing of the data transfer. In general, the command informa-
tion provided by the arbitration module 1504 may include: the
same information stored in the buffers that are used for pur-
poses of arbitration, namely, the TARGET ADDRESS, and



US 9,110,831 B2

23

more specifically, the starting address for the transfer; an
identifier of the amount of data to be transferred, which may
be a word count; and the transfer direction. The controller
802, acting as a memory control module, will then activate the
appropriate memory chips as indicated by the TARGET
ADDRESS (starting address).

If the transfer direction indicates a WRITE to memory, the
controller 802 will coordinate issuing commands to the
memory chips (e.g., timing and address commands) while
transferring data from the output memory bufter 922.

If the transfer direction indicates a READ from the RAM
memory, the controller 802 will coordinate issuing the appro-
priate address and timing commands to the memory chips
while transferring data from the memory chips to a output
FIFO buffer is associated with the I/O interface module to
which the data is directed.

In one example, the controller 802 will receive the next set
of command information before the data transfer associated
with the previous command is completed, thus allowing the
system to operate at maximum bandwidth.

The general operation of the controller 802 as it controls
the transfer of data to and from the physical RAM memory is
generally reflected in FIGS. 16 and 17.

Referring first to FIG. 16, one specific arrangement of the
physical RAM memory is shown. In the embodiment of F1G.
16, a controller 802 is illustrated and the connections between
the controller 802 and the physical RAM memory are shown.
In this example, the physical RAM memory coupled to the
controller 802 takes the form of seventy-two (72) memory
chips divided into four sections (1602, 1604, 1606, and 1608),
each section having 18 memory chips. In this example, each
memory chip has four banks (A, B, C, D). Memory chips are
coupled together such that they share: (a) address and control
lines (22 in the example), and (b) data lines (72 in the
example). The coupling shown in FIG. 16 is only one method
of connecting the physical memory chips to controller 802.
All four sections, despite having separate control buses, oper-
ate in unison and are issued commands at the same time and
for the same bank.

Additional details concerning the operation of the memory
controller 802 may be found in FIG. 17. FIG. 17 illustrates the
operation of the controller 802 over two basic memory cycles
(with the second basic memory cycle shown here as incom-
plete). In general, each memory cycle involves the transfer of
32 288-bit words to (or from) the DDR memory. In the spe-
cific example, the transfer occurs over 16 actual clock cycles.
At 333 MHz, this provides for a transfer rate of 1 KByte of
data each 48 ns, or 20.83 GBytes/second (data alone), for
each memory card. Considering that a system, as reflected in
FIG. 7, may have a number of memory cards, the overall
bandwidth of the system can be significantly higher than
20.83 GBytes/second and, if five or more memory cards are
used, can exceed 100 GBytes/second.

Referring to FIG. 17, a basic memory cycle is initiated by
activating Bank A ofthe memory through the command buses
associated with each section. This occurs in the example of
FIG. 17 atclock cycle 1. Four clock cycles later, at clock cycle
5, an activation command is provided for Bank B. Four cycles
thereafter, at clock cycle 9, Bank C is activated, and four
cycles after that, at clock cycle 13, Bank D is activated. This
approach, of selectively activating the various banks, allows
for any physical precharge times not to be violated, since
Bank A will be precharged between cycles 6 and 19, when the
subsequent activate command for Bank A is issued.

For each of the various banks, five cycles after the bank is
rendered active, the command indicating whether the data
transfer is a READ or a WRITE will be asserted for that

10

15

20

25

30

35

40

45

50

55

65

24

specific bank. Thus, this occurs at clock cycle 6 for Bank A,
clock cycle 10 for Bank B, clock cycle 14 for Bank C, and
clock cycle 18 for Bank D.

Five clock cycles after the provision of the indication of
whether the transfer is a READ or a WRITE, the data will be
provided to the data lines for four consecutive cycles.
Because the data is being transferred at a double data rate
(DDR) two words will be transferred for each memory clock
cycle. Thus eight 288-bit words of data will be transferred for
each bank over the entirety of the basic memory cycle (the
notation for the data bus in FIG. 17, W0, encompasses two
288-bit words).

During the course of the data transfer for the basic memory
cycle under discussion, the basic memory cycle for the next
memory cycle will be initiated through the assertion of the
activation command for Bank A at clock cycle 19. The
remainder of the subsequent basic memory cycle follows that
previously described above with respect to the first basic
memory cycle.

As the above indicates, a complete 1 Kbyte of data will be
transferred each basic memory cycle. In one embodiment, the
system can provide for “half-write” cycles where only 512
bytes are transferred. For such “half-write” cycles, the acti-
vations for only two consecutive banks will be asserted (e.g.,
Banks A & B or Banks C & D). The other banks will remain
idle during the cycle. The TARGET ADDRESS for the trans-
fer will determine which two of the four banks are active for
the transfer.

The above embodiments are illustrative and not limiting.
Other and further embodiments utilizing one or more aspects
of the inventions described above can be devised without
departing from the spirit of the disclosed embodiments. Fur-
ther, the order of steps described herein can occur in a variety
of sequences unless otherwise specifically limited. The vari-
ous steps described herein can be combined with other steps,
interlineated with the stated steps, and/or split into multiple
steps. Similarly, elements have been described functionally
and can be embodied as separate components or can be com-
bined into components having multiple functions.

The disclosed embodiments have been described in the
context of preferred and other embodiments and not every
embodiment of the invention has been described. Obvious
modifications and alterations to the described embodiments
are available to those of ordinary skill in the art. The disclosed
and undisclosed embodiments are not intended to limit or
restrict the scope or applicability of the invention conceived
of by the Applicants. Applicants intend to fully protect all
such modifications and improvements that come within the
scope or range of equivalent of the following claims.

What is claimed is:

1. A memory module having high-speed serial communi-
cation, comprising:

a first plurality of input processing blocks and a second
plurality of input processing blocks, each input process-
ing block configured to receive bits representing com-
mands, instructions and/or data according to a serial
format and rearrange the bits representing commands,
instructions and/or data according to a parallel format;

aplurality of memory devices, each memory device having
a physical memory space on which memory operations
are performed; and

a controller connected to the first and second plurality of
input processing blocks and the memory devices, the
controller configured to control communication
between the first and second plurality of input process-
ing blocks and each memory device to perform the
memory operations, the controller comprising:



US 9,110,831 B2

25

a first multi-channel buffer and a second multi-channel
buffer connected to the first and second plurality of
input processing blocks, respectively, each multi-
channel buffer configured to receive the bits repre-
senting commands, instructions and/or data in paral-
lel format from the first and second plurality of input
processing blocks, respectively, and construct a pre-
defined number of words from the bits representing
commands, instructions and/or data, each word being
composed of a predefined number of bits;

a first error correction and data protection circuit and a
second error correction and data protection circuit
connected to the first and second multi-channel buft-
ers, respectively, the first and second error correction
and data protection circuits configured to receive the
words from the first and second multi-channel buff-
ers, respectively, generate one or more error correc-
tion code bits using the words, add the error correction
code bits for each word to the word, and output each
word with the error correction code bits added
thereto;

afirst output buffer and a second output buffer connected
to the first and second correction and data protection
circuits, respectively, the first and second output buft-
ers configured to receive in turn the words with the
error correction code bits added thereto from the first
and second error correction and data protection cir-
cuits such that a first word from one of the first and
second error correction and data protection circuits is
provided to one of the first and second output buffers
and a next word from another one of the first and
second error correction and data protection circuits is
provided to another one of the first and second output
buffers; and

a memory buffer configured to receive the words with
the error correction code bits added thereto from the
first and second output buffers and to combine a pre-
defined number of the words in a predefined manner
to form a super-word.

2. The memory module of claim 1, wherein the controller
further comprises an arbitration module configured to deter-
mine whether each memory operationis a READ operation or
a WRITE operation, the arbitration module further config-
ured to prioritize memory operations that are READ opera-
tions unless memory operations that are WRITE operations
satisfy a predefined condition.

3. The memory module of claim 1, wherein the memory
module is a Flash-based memory module, the Flash-based
memory module including one or more of the following types
of Flash memory: Single-Level Cell Flash memory, and
Multi-Level Cell Flash memory.

4. The memory module of claim 1, wherein the memory
module is a RAM-based memory module, the RAM-based
memory module including one or more of the following types
of RAM: DDR RAM, DDR2 RAM, and DDR3 RAM.

5. A memory module having high-speed serial communi-
cation, comprising:

a first plurality of input processing blocks and a second
plurality of input processing blocks, each input process-
ing block configured to receive bits representing com-
mands, instructions and/or data according to a serial
format and rearrange the bits representing commands,
instructions and/or data according to a parallel format;

aplurality of memory devices, each memory device having

a physical memory space on which memory operations

are performed;

10

15

20

25

30

35

40

45

50

55

60

65

26

a controller connected to the first and second plurality of
input processing blocks and the memory devices, the
controller configured to control communication
between the first and second plurality of input process-
ing blocks and each memory device to perform the
memory operations; and

a first multi-channel buffer and a second multi-channel
buffer within the controller and connected to the firstand
second plurality of input processing blocks, respec-
tively, each multi-channel buffer configured to receive
the bits representing commands, instructions and/or data
in parallel format from the first and second plurality of
input processing blocks, respectively, and construct a
predefined number of words from the bits representing
commands, instructions and/or data, each word being
composed of a predefined number of bits.

6. The memory module of claim 5, further comprising a
first error correction and data protection circuit and a second
error correction and data protection circuit within the control-
ler, the first and second error correction and data protection
circuits configured to receive the words, generate one or more
error correction code bits using the words, add the error
correction code bits for each word to the word, and output
each word with the error correction code bits added thereto.

7. The memory module of claim 5, further comprising a
first output butfer and a second output buffer within the con-
troller, the first and second output buffers configured to
receive in turn the words such that a first word is provided to
one of the first and second output buffers and a next word is
provided to another one of the first and second output buffers.

8. The memory module of claim 5, further comprising a
memory buffer configured to receive the words and combine
a predefined number of the words in a predefined manner to
form a super-word.

9. The memory module of claim 5, wherein the controller
comprises an arbitration module configured to determine
whether each memory operation is a READ operation or a
WRITE operation, the arbitration module further configured
to prioritize memory operations that are READ operations
unless memory operations that are WRITE operations satisfy
a predefined condition.

10. The memory module of claim 5, wherein the memory
module is a Flash-based memory module, the Flash-based
memory module including one or more of the following types
of Flash memory: Single-Level Cell Flash memory, and
Multi-Level Cell Flash memory.

11. The memory module of claim 5, wherein the memory
module is a RAM-based memory module, the RAM-based
memory module including one or more of the following types
of RAM: DDR RAM, DDR2 RAM, and DDR3 RAM.

12. A memory module having high-speed serial communi-
cation, comprising:

a plurality of input processing blocks, each input process-
ing block configured to receive bits representing com-
mands, instructions and/or data according to a serial
format and rearrange the bits representing commands,
instructions and/or data according to a parallel format;

aplurality of memory devices, each memory device having
a physical memory space on which memory operations
are performed; and

a controller connected to the plurality of input processing
blocks and the memory devices, the controller config-
ured to control communication between the plurality of
input processing blocks and each memory device to
perform the memory operations, the controller compris-
ing:



US 9,110,831 B2

27

amulti-channel buffer connected to the plurality of input
processing blocks, the multi-channel buffer config-
ured to receive the bits representing commands,
instructions and/or data in parallel format from the
plurality of input processing blocks, respectively, and
construct a predefined number of words from the bits
representing commands, instructions and/or data,
each word being composed of a predefined number of
bits;

an error correction and data protection circuit connected
to the multi-channel buffer, the error correction and
data protection circuit configured to receive the words
from the multi-channel buffer, generate one or more
error correction code bits using the words, add the
error correction code bits for each word to the word,
and output each word with the error correction code
bits added thereto;

an output buffer connected to the correction and data

protection circuit, respectively, the output buffer con-
figured to receive the words with the error correction
code bits added thereto from the error correction and
data protection circuit; and

10

20

28

a memory buffer configured to receive the words with
the error correction code bits added thereto from the
output buffer and to combine a predefined number of
the words in a predefined manner to form a super-
word.

13. The memory module of claim 12, wherein the control-
ler further comprises an arbitration module configured to
determine whether each memory operation is a READ opera-
tion or a WRITE operation, the arbitration module further
configured to prioritize memory operations that are READ
operations unless memory operations that are WRITE opera-
tions satisfy a predefined condition.

14. The memory module of claim 12, wherein the memory
module is a Flash-based memory module, the Flash-based
memory module including one or more of the following types
of Flash memory: Single-Level Cell Flash memory, and
Multi-Level Cell Flash memory.

15. The memory module of claim 12, wherein the memory
module is a RAM-based memory module, the RAM-based
memory module including one or more of the following types
of RAM: DDR RAM, DDR2 RAM, and DDR3 RAM.

#* #* #* #* #*



